
Mike Dias
Principal Engineer

Paul Ashley
Principal Engineer

Data Mesh and Compliance in a Multi-
Regional Data Lake at Atlassian

JZ

Our journey building a customer facing Data Lake

Agenda

Opportunities and Challenges
The motivation behind the Customer Data Lake

Data Replication
Our Data Mesh approach for CDC replication

Streaming Architecture
Realtime analytics with Delta Tables

Multi-Region Compliance
Data Residency and GDPR at scale

Putting all together
Did we actually achieve our goals?

Opportunities
and Challenges

Atlassian Analytics
With the advent of the Chartio acquisition, we wanted
to create a seamless analytics experience for
customers on top of their own data

Data Exports
Customers migrating from our on-prem solutions to our
cloud struggled with the missing direct access to their
databases to export their data

In-Product
Analytics
We want to get the data out of product databases in
order to provide efficient analytical experiences in-
product without overloading the operational databases

ML Training
We want to create Machine Learning models that
better fits customer data to produce more acurate
results, leading to a better experience

Let’s build a customer
facing Data Lake!

Data
Replication

Many Technologies Many Databases Many Teams
Dynamic teams constantly
changing due to reorgs, find the
right people to talk about specific
parts of the products can be
challening.

From sharded fleets of RDSs to
DynamoDB and MongoDB. Data
is stored in many different
databases now and it will
continue to evolve over time.

From monoliths to microservices
and serverless. We have a wide
rage of technologies and
architectures in multiple
languages.

Replication Challenges

Logical Replication
(Application instrumentation)

Physical Replication
(Database instrumentation)

Technology availability
(How much it depends on specific

technology capabilties?)
Technology independent Technology dependent

Stability
(How often it can break?) Slowly evolving contracts Rapidly evolving contracts

Flexibility
(How easy is for producer to change

their systems?)
Most flexible Less flexible

Effort
(How much we need to invest to

replicate data?)
High investment upfront Low investment upfront

Logical vs Physical

Replication Bus

SEARCH ENGINES

CACHES

DATA LAKES

DYNAMO
DB

JIRA

RDS

CONFLUENCE

RDS EBS

REALTIME CDC

BOOTSTRAP

REALTIME CDC

BOOTSTRAP

REALTIME FLOW

BOOTSTRAP FLOW

KINESIS

S3

REPLICATION BUS

Replication Protocol

Protobufs
Compact wire format with good
backwards compatibility.

LWW CRDT
Garantees converging to the
latest version even on unordered
transports.

Generic Payload
Any protobuf with support for
large messages offloaded to S3.

Schema Management

Centralized repo
All conceptual are defined in the
same place in Typescript as the
agnostic language.

Schema evolution
Tools to enforce expand-contract
rules to prevent breaking
changes.

Domain ownership
Teams are responsible for
evolving their models as they
evolve their applications.

REFINEMENT
TRANSFORMATION

(DBT MODELS + SQL)

OWNED BY USE CASE TEAM
(CONSUMER ALIGNED)

Data Mesh Principles over Artifacts

INTERMEDIATE
REPRESENTATION

(JSON)

WIRE
REPRESENTATION

(PROTOBUF)

TABULAR
REPRESENTATION

(DBT SOURCES)

AUTO GENERATED
ARTIFACTS

CONCEPTUAL
MODEL

(TYPESCRIPT)

OWNED BY DOMAIN TEAM
(SOURCE ALIGNED)

Streaming
Architecture

OUR LAKEHOUSE

dbt Workflow

Transform Process
1:n proto to table
mappings
In the ingestion pipeline each
protobuf from a source product
maps to many different tables for
the customer

SPARK STREAMING JOB - TRANSFORM PROCESS

Three
Fixed
Writer
Types

Append
Does not upsert data, appends
each row to the table verbatim

Merge
Matches on primary key, taking
the highest versioned entity

MergeExploded
For inserting exploded arrays,
similar to merge but replaces
multiple instances of the same
PK

Challenges

Large Table Stability

Upserting to large
tables is slow
We need to upsert in large micro
batches for efficiency to scale

BUT

Doing so makes fault tolerance in
spark more problematic

Large Table Stability

Mitigation
Break the pipeline into two steps,
doing the merge as a final step,
reading from an append-only sink

Scaling lots of streaming jobs -
Autoscaling
Managing and scaling
streaming jobs with
dynamic load is hard

We added lag metrics which get
sent to a PID controller on our
control plane, which then adjusts
the workers to try to reach a set
point.

Table Maintenance

Two maintenance
schedules

Conflictless jobs (e.g. Vacuum)
run daily

Conflicting jobs (e.g. optimise)
runs weekly during scheduled
downtime

Multi-Region Complia

Why do Multi Region?

Give customers choice
Customers want the option to
choose where their data is
ultimately housed to comply with
regulations.

Improve query latency
Having the data closer to the
customer reduces query times

Improve Ingestion
performance
Distributing data across several
regions reduces the tables size. .
. which improves merge
performance

Blast radius reduction
One region or pipeline failure
does not affect all of our
customers

Multi-region Architecture

Every customer workspace is
configured into one of 12 different
AWS regions. All Storage and
compute for that customer is
performed in that region

We deploy our entire data plane
architecture across several
regions by utilising terraform
modules, allowing us to easily
replicate the entire stack in a new
environment/region.

A customers data region can
change by:
1. Customers electing to have their data

bound to a specific region
2. Unbounded customers usage patterns

indicate they are better suited to another
region

Changing a
customers
data residency

Migration requests

Each migration request is
handled by our global control
plane, which starts a job to re-
ingest the data in the new region,
followed by a job to delete the old
data once the copy finishes

Our control plane receives the delete
request and executes a job on the Data
Plane to mark the data for deletion

GDPR-
Deletions and
resurrections

Handled in the same way as
migration requests . . . without
the copy

Deletion requests

Each Deletion request is handled
by our global control plane, which
fires off a job to delete the old
data

- Additional security feature offered by
Atlassian allowing customers to provide
and manage their own encryption keys
for their data

What is “Bring
Your Own Key”
(BYOK)?

Cannot natively encrypt
beyond the table level

Decryption from SQL
warehouses

Simplicity
We did not want to have to
manage a completely new stack
and suite of business logic
specifically for this use case.

We needed a way for our SQL
warehouses to seamlessly
identify and apply the customers
keys to be able to read data from
the lake

Natively, encryption only occurs
at the table level. Whilst this is
possible for our lake, it would
involve creating and managing
hundreds of thousands of tables

BYOK - Challenges

Use AWS Encryption at the HIVE
partition level
It’s a common misconception that SSE-KMS only
works at bucket-level because most examples focus
on bucket configurations but in fact, key ids can be
specified at the object levelBYOK - S3 FS

strategy Extend Hadoop S3AFileSystem
create a path-to-CMK mapping configuration and use
it to upload objects with the desired keys.

SQL Endpoints honor S3 encryption
Because this encryption happens at the s3 level, the
consumption of data via our SQL endpoints is
transparent to users.

BYOK - S3 FS
Architecture

Putting
all together

Atlassian Analytics

Data Exports

Deltas sharing on partitions

In-product Dashboards

ML Training

01 02 03 04
The need for a
customer data

lake

Unleash many data
opportunities

Data
Replication

Protocol

Logical replication
approach for Data

Mesh

Streaming
Processing

Supporting realtime
transformations

Compliance
Requirements

To meet our most
sofisticated

customer needs

Recap

05
Delivering

Value

By shipping new
products and
experiences

Thank you!

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44

