A ATLASSIAN

Data Mesh and Compliance in a Multi-
Regional Data Lake at Atlassian

Our journey building a customer facing Data Lake

Mike Dias ,.,"%a Paul Ashley
Principal Engineer ‘«__¢ Principal Engineer

Opportunities and Challenges
The motivation behind the Customer Data Lake

Data Replication
Our Data Mesh approach for CDC replication

Streaming Architecture
Realtime analytics with Delta Tables

Multi-Region Compliance
Data Residency and GDPR at scale

Putting all together

Did we actually achieve our goals?

Opportunities
and Challenges

Atlassian Analytics

With the advent of the Chartio acquisition, we wanted
to create a seamless analytics experience for
customers on top of their own data

Data Exports

Customers migrating from our on-prem solutions to our
cloud struggled with the missing direct access to their
databases to export their data

In-Product
Analytics

i | We want to get the data out of product databases in

order to provide efficient analytical experiences in-
product without overloading the operational databases

ML Training

We want to create Machine Learning models that
better fits customer data to produce more acurate
results, leading to a better experience

Let’s build a customer
facing Data Lake!

Data
Replication

Many Technologies

From monoliths to microservices
and serverless. We have a wide
rage of technologies and
architectures in multiple
languages.

Replication Challenges

Many Databases

From sharded fleets of RDSs to
DynamoDB and MongoDB. Data
IS stored in many different
databases now and it will
continue to evolve over time.

A

Many Teams

Dynamic teams constantly
changing due to reorgs, find the
right people to talk about specific
parts of the products can be
challening.

Logical vs Physical

Technology availability
(How much it depends on specific
technology capabilties?)

Stability
(How often it can break?)

Flexibility
(How easy is for producer to change
their systems?)

Effort
(How much we need to invest to
replicate data?)

Logical Replication
(Application instrumentation)

Physical Replication

(Database instrumentation)

Technology independent

Technology dependent

X

Slowly evolving contracts

Rapidly evolving contracts Q

Most flexible

Less flexible

X

High investment upfront Q

Low investment upfront

JIRA

DYNAMO
DB

Replication Bus

BOOTSTRAP

CONFLUENCE

BOOTSTRAP

REPLICATION BUS

REALTIME FLOW

BOOTSTRAP FLOW

SEARCH ENGINES

CACHES

DATA LAKES

Replication Protocol

Protobufs e Ereiei o
message FacsimlileRecord 1
Compact wire format with good ARI resource_ari = 1;
backwards compatibility. int32 entity_type =
ARI workspace_1d = 3;
LWW CRDT 1ntés version = 4;

1inté4 generation_watermark = 5;

Garantees converging to the
bool 1s_tombstone = 6;

latest version even on unordered
transports.

oneof payload {
google.protobuf.Any entity = 7;

Generic Pay|Oad OffloadPointer offload_pointer

Any protobuf with support for
large messages offloaded to S3.

Schema Management

Centralized repo

All conceptual are defined in the
same place in Typescript as the
agnostic language.

Schema evolution

Tools to enforce expand-contract
rules to prevent breaking
changes.

Domain ownership

Teams are responsible for
evolving their models as they
evolve their applications.

5

5

(port interface JiralssueManifest extends Manifest

— g ———
¥

owner: Team.JIRA_ISSU Xl

status: EntityStatus.ACTIVE;

-l
i 1 [
VAL I L UT

F

(port interface Jiralssue extends Entity o

aId: String;
ject: ComposedBy<JiraProject>;
fields: JiralssueField[];

Data Mesh Principles over Artifacts

OWNED BY DOMAIN TEAM AUTO GENERATED OWNED BY USE CASE TEAM
(SOURCE ALIGNED) ARTIFACTS (CONSUMER ALIGNED)

CONCEPTUAL INTERMEDIATE WIRE TABULAR REFINEMENT
MODEL R EP RE S ENFAHON—]—T—REPRESENTATHON—T—T—REPRESENTATION TRANSFORMATION

(TYPESCRIPT) (JSON) (PROTOBUF) (DBT SOURCES) (DBT MODELS + SQL)

Streaming
Architecture

OUR LAKEHOUSE

Config Repo “

e "xdbt |

Customer scoping information—3m

i Create new customer connection

Enhanced view definition

SOL transform — . Lake Provisioning Service
—PFrotobuf definition

Databricks SQL
endpoint
v po
Y o
Atlassian
» > A « 1—"“-‘]”“ Analytics
DELTA LAKE
N Spark structued A Databricks SQL Application
Product Kinesis stream streaming job v G“?‘“”"E‘r endpoint i
databases views
Enhanced

Views

dbt Workflow

! schema repo i
i i deployment pipeline -
i View configs | P L .
| i i i
i | i \ | dbt triggers test
| : l ! queries and view
| | | dbtrun .. | creation on
l ! l ! Databricks
i E : i : Databricks Sql
| : - | dpoint
! ['YML | . ! . endpo
! Table configs i ! i
| i E upload_manifest.json i
i i upload dbt manifest file
e e e e AT m et |
Reads Reads
refinements refinements and
artefacts enhancements
(Compiled sq) . | — artefacts
: =16 i
: Registry v
Lake
Pipeline (Spark Provisioning
Streaming Jobs) Service
' i
Populates i
refined tables Provisions
. customer views
. :
= + L
vV l
VAN
vV

Transform Process

1:n proto to table

mappings @ N Q
In the ingestion pipeline each

protobuf from a source product Transform 1 Table 1
maps to many different tables for

the customer
€ — =

Transform 2 Table 2

o A\

Transform 3 Table 3

Protobuf Ingest

SPARK STREAMING JOB - TRANSFORM PROCESS

“compiled_sql": "WITH cte_@ AS (

SELECT

CAST(envelope_fields_resource_ari_value AS STRING) AS envelope_fields_resource_ari_value,

CAST(envelope_fields_version AS LONG) AS envelope_fields_version,

CAST(envelopeffieldsfisftombstone AS BOOLEAN) AS envelope_fields_is_tombstone,
CAST(envelope_fields_workspace_id value AS STRING) AS envelope_fields_workspace_id_value,
CAST(envelope_fieldsfgeneration_counter AS LONG) AS envelope_fields_generation_counter,

CAST(id_value AS STRING) AS id_value,

CAST(created_at_seconds + CAST(created_at_nanos / 1e9 AS DOUBLE) AS TIMESTAMP) AS created_at,

cte_0 (

{{ select_envelope_fields() }}

CAST(id_value STRING) id_value,

CAST(created_at_seconds + CAST(created_at_nanos / 1e9 DOUBLE) created_at,
CAST(question STRING) question,

CAST(title AS STRING) title, y - i

CAST(updated_at_seconds + CAST(updated_at_nanos / 1e9 DOUBLE) updated_at, :ﬁ i ,; ; i
CAST(author_value AS STRING) AS author_value, Y CAST(question AS STRING) AS question,
CAST (workspace_value STRING) workspace_value, \ - CAST(title AS STRING) AS title,
CAST(question_adf STRING) question_adf, _ Sh{; A CAST(updated_at_seconds + CAST(updated_at_nanos / 1e9 AS DOUBLE) AS TIMESTAMP) AS updated_at,
Fii: b z
T G } AS vote_count, y ' CAST(author _value AS STRING) AS author value,
CAST(chosen_answer) chosen_answer, y A .
4 = CAST(workspace_value AS STRING) AS workspace_value,

CAST(is_resolved) is_resolved, i > Htﬁ%ﬁ_ . :
CAST(classification STRING) classification, - - CAST(question_adf AS STRING) AS question_adf,

{{ select_required_fields() }}
{{ source('manifold_entities', 'AvocadoQuestion') }}

CAST(vote_count AS INTEGER) AS vote_count,

CAST(chosen_answer AS BOOLEAN) AS chosen_answerJ

CAST(is _resolved AS BOOLEAN) AS is_resolved,

CAST(classification AS STRING) AS classification,
CAST(row_refreshed at AS TIMESTAMP) AS row_refreshed at,

CAST(row_refreshed_at_day AS DATE) AS row_refreshed_at_day,

CAST(shard_id AS STRING) AS shard_id,

CAST(workspace_id AS STRING) AS workspace_id

FROM manifold _entities.AvocadoQuestion

)

SELECT
CAST
CAST

{{ select_envelope_fields() }}

id_value,

created_at,

question,

title,

updated_at,

author_value,

workspace_value,

question_adf,

vote_count,

chosen_answer,

is_resolved,

classification,

{{ select_required_fields() }}
cte_@

(envelope_fields_resource_ari_value AS STRING) AS envelope_fields_resource_ari_value,
(envelope_fields_version AS LONG) AS envelope_fields_version,

CAST(envelope_fields_is_tombstone AS BOOLEAN) AS envelope_fields_is_tombstone,
CAST(envelope_fields_workspace_id_value AS STRING) AS envelope_fields_workspace_id_value,
CAST(envelope_fields_generation_counter AS LONG) AS envelope_fields_generation_counter,

id value,

created at,

question,

title,

updated_at,

author_value,

workspace_value,

question_adf,

vote_ count,

chosen_answer,

is_resolved,

classification,
CAST(row_refreshed_at AS TIMESTAMP) AS row_refreshed at,

CAST(row_refreshed_at_day AS DATE) AS row_refreshed_at_day,

CAST(shard_id AS STRING) AS shard_id,

CAST (workspace_id AS STRING) AS workspace_id

FROM cte_0"
Il

def transform(dataframe:) (implicit entityCompanion: EntityMapper.
dataframeWithEnumsResolved = resolveEnumsInMicroBatch(dataframe, entityCompanion)

viewName = getViewNameFromManifold

dataframeWithEnumsResolved.createOrReplaceTempView(viewName)

parsedSql = sqgl.replace(+ viewName, viewName)

dataframeWithEnumsResolved. sparkSession.sql(parsedSql)

Append

Does not upsert data, appends
each row to the table verbatim

Merge

Matches on primary key, taking
the highest versioned entity

Writer =

MergeExploded

For inserting exploded arrays,
similar to merge but replaces
multiple instances of the same
PK

Challenges

Large Table Stability

Upserting to large

: smaller Larger
tables is slow Microbatches Microbatches
We need to upsert in large micro
batches for efficiency to scale < >

More Less
sUT Reliable Heliable
. . Streams Streams
Doing so makes fault tolerance in
spark more problematic Less hore
Efficient Efficient

Upserts Upserts

Large Table Stability

Mitigation

Break the pipeline into two steps,
doing the merge as a final step,
reading from an append-only sink

Smaller Microbatches Larger Microbatches
- . -A— A
ETL Pipeline Append only Delta . Merge Customer tables

Scaling lots of streaming jobs -
Autoscaling

Control Plane | |
1
| PID

Managing and scaling @*_Dﬁ"ﬂ workers— | Gontroller
streaming jobs with Databricks AP |
dynamic load is hard
We added lag metrics which get | "l
sent to a PID controller on our Scaling Commands

. . SQS
control plane, which then adjusts T
the_ workers to try to reach a set Approximate delay
point. (Spark Listener)

Data Plane

» | Microbatch

Table Maintenance

All tables
Two maintenance ﬂ
schedules Daily
Delta table vacuum
Conflictless jobs (e.g. Vacuum)
run daily
Conflicting jobs (e.g. optimise) Delta table
runs weekly during scheduled <:
: |
downtime Weekly
Optimise
Delta table Delete Tombstones

Multi-Region Complia

Give customers choice

Customers want the option to
choose where their data is
ultimately housed to comply with
regulations.

A

Improve Ingestion

performance
Distributing data across several

regions reduces the tables size. .

. which improves merge
performance

Why do Multi Region?

Improve query latency

Having the data closer to the
customer reduces query times

Blast radius reduction

One region or pipeline failure
does not affect all of our
customers

Multi-region Architecture

Every customer workspace is
configured into one of 12 different
AWS regions. All Storage and
compute for that customer is
performed in that region

We deploy our entire data plane
architecture across several
regions by utilising terraform
modules, allowing us to easily
replicate the entire stack in a new
environment/region.

Data Plane (us-east-1)

A

Products

Kinesis Streaming jobs

S N

Tables

).

Customer
views

-
-

Databricks SQL
endpoint

Data Plane (eu-central-1)

| |

« ¢ L' &

S —

Kinesis Streaming jobs .

Customer II:*.=_|t.=_lbrln':l-c:«"T SQL

Tables views endpoint
Data Plane (ap-southeast-2)

] , | '

In
] — -
Kinesis Streaming jobs

Tables

Customer
views

Databricks SQL
endpoint

Application

A customers data region can

Changing a change by:
1. Customers electing to have their data
c u Sto m e rs bound to a specific region

2. Unbounded customers usage patterns

d ata res i d e n Cy indicate they are better suited to another

region

Migration requests

Control Plane (global)]
Il
___ Migration request | h:Erzgzp
‘ (HTTP endpoint) hatllmler
Provisioning
. . . Service
Each migration request is
handled b.y our globall control Migration Request Vioration Dilete Reques
plane, which starts a job to re- R
ingest the data in the new region, |
I i |,
followed by a job to c.je_lete the old ‘ N { = ‘_ . =
data once the copy finishes — Kinesis |Streaming jobs Customer D8abcs 51 “Application
Tables views
+
—Get customer data >
"‘— LMarkfgrzgg[;rndata ‘

Migration Copy Job
Migration Delete Job

Ingest in new region

Data Plane (ap-southeast-2)

Y
di; , ‘@
> 2 i
Kinesis Streaming jobs
Databricks SQL
endpoint

Customer
Tables views

GDPR-
Deletions and
resurrections

Handled in the same way as
migration requests . . . without

the copy
Our control plane receives the delete

request and executes a job on the Data
Plane to mark the data for deletion

Deletion requests

Control Plane (global)]
I
EaCh Deletion requeSt iS handled \ Migration request M:E,::Egz?
. HTTP endpoi
by our global control plane, which A T endeeind handler
fires off a job to delete the old Provisioning
data
Migration Delete Request
Data Plane (us-east-1)
% e =
‘\ }q }‘ —.@7] <
Kinesis Streaming jobs _
Products Databricks SQL
Customer endpoint

Tables views

) R
Mark customer clata_
for deletion

Migration Delete Job

Lery

Atlossion B

Analytics

Application

| “ |
What is “Bring
yy - Additional security feature offered by
YO u r Own Key Atlassian allowing customers to provide

and manage their own encryption keys

(BYO K) ? for their data

BYOK - Challenges

Cannot natively encrypt
beyond the table level

Natively, encryption only occurs
at the table level. Whilst this Is
possible for our lake, it would
iInvolve creating and managing
hundreds of thousands of tables

Decryption from SQL
warehouses

We needed a way for our SQL
warehouses to seamlessly
identify and apply the customers
keys to be able to read data from
the lake

A

Simplicity

We did not want to have to
manage a completely new stack
and suite of business logic
specifically for this use case.

BYOK -S3 FS
strategy

Use AWS Encryption at the HIVE
partition level

It's a common misconception that SSE-KMS only
works at bucket-level because most examples focus
on bucket configurations but in fact, key ids can be
specified at the object level

Extend Hadoop S3AFileSystem

create a path-to-CMK mapping configuration and use
it to upload objects with the desired keys.

SQL Endpoints honor S3 encryption

Because this encryption happens at the s3 level, the
consumption of data via our SQL endpoints is
transparent to users.

BYOK -S3 FS
Architecture

tlassian
customer managed
su;;pﬂ{d \ /7/
p pplication \H \ \ ‘I' ,{
\\e J/
spmig —wntapa'rgarr—h_’/ﬁ — - ~ \k /
Streaming an() --\:"':"ﬂ,_. ﬁ__ll- I \-‘d? T/
Acoop Key Lookup \
(with custom libra ry) ;‘? ?

TTTTT

Putting
all together

Dashboards

ATLASSIAN Analytics &

Search for column, table
asset_object
asset_object_attribute

asset_object_issue_mappi.

B B H @

asset_object_schema
asset_type
asset_type_attribute_met.
asset_type_attribute_typ.

asset_type_schema_mapping

i 8 a 8

A Issues created from JSW DL Test

Unig #
Month

Issue Id

Created At

A Result table

Month of Resolution At

Issues resolved from A JSW DL Test

Data Give feedback

Visual

EELECT DATE_FORMAT("Jira Issue’ . resolution_at”, ‘yyyy-MM") A5 "Month of
Resolution At",

COUNT(DISTINCT “Jira Issue’. issue_id") AS "Issues resolved’
FROM “18fcadB6a_94d9_4eab_aBSa_e7B2ca®B8763d . jira_issue AS “Jira Issue’
INMER JOIN "1Bfcad8Ga_94d9_4ead_aB5a_e782ca%98763d . jira_project AS “Jira
Project™ ON “Jira Issue’. project_id’ = “Jira Project’ . project_id
WHERE (Jira Issue’ . resolution_at™ »>= TIMESTAMP({CALENDAR.START})

AND “Jira Issue . resolution_at™ < (TIMESTAMP({CALENDAR.END}) +
INTERVAL 1 DAY)

AND {PROJECT_NAME.IN(' Jira Project project_id " })

AND {ASSIGNEE.IN("Jira Issue assignee_account_id " }})
GROUFP BY DATE_FORMAT(Jira Issue . resolution_at ™, “vyyyy-MM')
ORDER BY COUNT(DISTINCT "Jira Issue’. issue_id’) ASC, DATE_FORMAT(Jira
Issue . ‘resolution_at”, "yyyy-MM") ASC
LIMIT 109888 :

Created At betwesn and

including {CALENDAR.START) and (CALENDAR.END)
Project id s one of (PROJECT_MNAME)

Assignee Account Id £ one of (ASSIGNEE)

Issues resolved

SQL

Q

Chart e

Quick overview

Cycle time Flow efficiency

3 days 61%

on average to complete a of time features are in completed
feature progress state
Flow metrics analysis
Cycle time trend
Average time to complete features
All types

Architectural — Business

Average cycle time (in days)

Program increment

Atlassian Analytics

* 0 08

Throughput

16 features

Enabler

Cancel Save to dashboard -~ "
ALUTD

Work in progress Business results

4 objectives

completed program objectives

6 features

open or in progress in
current program increment

Flow efficiency trend
Ratio of active time to cycle time for features

Supporting

All types Architectural

100% L

BO%
G0%

A40%

Flow efficiency

20%

0%

Program increment

Key results

0.8

average score

— Business

10Q

Enabler

Supporting

Data Exports

Data Provider Data Recipient

Access ¢
permissions

, tableou

i » s s s s s s s s s AN R AN AN AT EE TR AN AN AR EE NS &Dﬂl:iz
i & " .
T ‘ .. - I:;l pandas

OK, here are short-lived URLs to read:
https://s3.aws.com/part1?sig=...

nttps://sd.aws.com/part47sig=...

Delta Lake Table Delta Sharing Server Delta Sharing Client

.4

S3 Ubjects
(in Parguet format)

In-product Dashboards

<. Plato Data Lake - Backlog-. x +

c 2% hello.jira.atlassian.cloud/jir

(%)

2 Search | Bchat @ @ g’

4i'Jira Your work v Projects ~ Filters~ Dashboards~ Teams~ Plans~ Assets Appswv

Opsgenie - Analytics x +
& o3 atlassian.app.opsgenie.com/ tsfmain o =~
Pp.opsg D g T e
21 & Opsgenie Alerts Incidents Whoison-call Teams Services Analytics Settings .@ © v)))
~ [#* Insights 2= View settings
- Meet the new Opsgenie Analytics o
i Al -a , _ , G I insi
v We've redesigned analytics for improved performance and versatile visualization of your data. Backlog insights QO X
Send feedback \74 Use these insights to plan your next sprint.
REPORTING Sprint: FY24 - LightSpeed Week 7
> APl Usage Reports . .
ge Fep Sprint commitment o -
> Alert MTTA/R Reports Alert Statistics for the Month Chart data updated 34 minutes ago Current sprint
This dashboard gives you a guick overview of the month’s most important alert metrics such as mean-time-to-acknowledge and close, and the number of alerts by team, per hour, and per 5.1
> Alert Reports day ! .
. Average points
completed over the
DevQOps Metrics last 5 sprints
Quick overview e -
[

Incoming Call Routing

Alerts created this month Mean time to acknowledge Mean time to close FY24 - LightSpeed Week 7 4 Over target

Infrastructure Health

Report . . Committed Recommended
824,594 21.46% 494.47 minute (S) 7313% 512.42 mi nutE(S) 46.89% 19 4-6
Monthly Overview AL e
Motification Reports
Viewing statistics for 2024-04-01 to 2024-04-30 Issue type breakdown Q v

On Call Reports Your top issue types to focus on in this sprint.

User Management Report Detailed Analysis story (R

Number of alerts per hour Number of alerts by teams Epic l
OTHER Shows how many alerts were created in each hour of the day for the current month. Shows the number of alerts created for each team in your organization.

OpsGenie Maya

I
Postmortem reports 80,000 I L R
P Micros Compute [#+* Give feedback
-
. 8 enp Micros Core Sydney
ICC Past Sessions £ 50000 —
]] Marketing Data Engineering [l
= E
2 40,000] -
z = Confluence SRE i
g u
. g 30,000 Admin Experience Backend [}
4> Give Feedback [ad
Fabric - Media Experience Servi.. [
20,000 |
Analytics Platform - Customer A [
00 01 02 03 04 05 06 OF OB 09 W0 M 12 13 14 15 16 17 18 19 20 21 22 23 0 20k 40k 60k B0k 100k 120k 140k 160k 180k 200k 220k 240k 260k 280k 300k
Hour of the day MNumber of alerts

Q ° Incidents
\ Number of alerts ier dai J

ML Training

Workflow Descriptor A Workflow Descriptor B
(Use Case MLP-123) (Use Case MLP-123)

Workflow O
(Use Case

scriptor C Workflow C
MLP-458) (Use Case

scriptor D
MLP-789)

fapi/run

¥

L 4
Y

ML Studio
Orchestrator

-

MLP-123
Databases

mi-ugc-prod databricks
v

01

The need for a
customer data
lake

Unleash many data
opportunities

02

Data
Replication
Protocol

Logical replication
approach for Data
Mesh

Recap

03

Streaming
Processing

Supporting realtime
transformations

04

Compliance
Requirements

To meet our most
sofisticated
customer needs

05

Delivering
Value

By shipping new
products and
experiences

A ATLASSIAN

Thank you!

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44

